
PHYSICAL REVIEW E 66, 046134 ~2002!
Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies:
A basis for q-exponential distributions

Sumiyoshi Abe
Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

~Received 6 June 2002; published 24 October 2002!

The q-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution,
are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of
maximum entropy, they can apparently be derived from three different generalized entropies: the Re´nyi en-
tropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingly, mere fittings of observed data by the
q-exponential distributions do not lead to identification of the correct physical entropy. Here, stabilities of these
entropies, i.e., their behaviors under arbitrary small deformation of a distribution, are examined. It is shown
that, among the three, the Tsallis entropy is stable and can provide an entropic basis for theq-exponential
distributions, whereas the others are unstable and cannot represent any experimentally observable quantities.
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I. INTRODUCTION

It is known @1–3# that there are a number of comple
systems whose statistical properties at the stationary s
are well described by theq-exponential distributions, which
are generalizations of the Zipf-Mandelbrot power-law dis
bution @4#. The q-exponential distributions are anomalo
distributions from the viewpoint of conventional statistic
mechanics characterized by Boltzmann’s exponential fac
Since it is so frequently observed in nature, it is importan
develop bases for such distributions. In this context, we w
to mention that quite recently theq-exponential factor has
been obtained for the logistic map at the edge of chaos by
renormalization-group method as well as by the Pesin eq
ity for the generalized Kolmogorov-Sinai entropy and t
generalized Lyapunov exponent@5#. There, the value of the
entropic index has been calculated analytically.

The explicit form of theq-exponential distribution is the
following:

pi5
1

Z̃q~l!
eq~2lQi ! ~ i 51,2,...,W!, ~1!

Z̃q~l!5(
i 51

W

eq~2lQi !, ~2!

whereW is the number of accessible microscopic states o
system under consideration,Qi is the i th value of a physical
quantity Q, l is a factor related to the Lagrange multiplie
andeq(t) is theq-exponential function defined by

eq~ t !5H @11~12q!t#1/~12q! @11~12q!t.0#

0 @11~12q!t<0#.
~3!

q is a positive real number termed theentropic index. This
distribution has the cutoff atQi ,max51/@(12q)l# if 0 ,q
,1, whereas it is equivalent to the Zipf-Mandelbrot-ty
asymptotic power-law distribution with the exponent 1/q
21) if q.1. In the limit q→1, theq-exponential function
converges to the ordinary exponential function and so d
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the q-exponential distribution to the Boltzmann-Gibb
Jaynes exponential distribution.

Following Gibbs’ procedure, one may also wish to deri
theq-exponential distribution from the stationarity conditio
on a certain generalized entropy. Such an entropy is foun
be not unique, however. There exist three known differ
entropies that are maximized by theq-exponential distribu-
tion under the constraint on the normalizedq-expectation
value ofQ. This can be seen as follows.

Consider the functional

F~J!@p;a,b#5Sq
~J!@p#2aS (

i 51

W

pi21D
2bS (

i 51

W

PiQi2QqD ~J5R,T,NT!. ~4!

a and b are the Lagrange multipliers associated with t
normalization condition on the basic distributio
$pi% i 51,2,...,W , and the normalizedq-expectation value ofQ,
( i 51

W PiQi5Qq , wherePi is the escort distribution@6# de-
fined by

Pi5
~pi !

q

(
j 51

W

~pj !
q

. ~5!

The three generalized entropies are listed as follows:

Sq
~R!@p#5

1

12q
ln (

i 51

W

~pi !
q, ~6!

Sq
~T!@p#5

1

12q F(
i 51

W

~pi !
q21G , ~7!

Sq
~NT!@p#5

1

12q F 12
1

(
i 51

W

~pi !
qG , ~8!
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which are the Re´nyi entropy@7#, the Tsallis entropy@8#, and
the normalized Tsallis entropy@9,10#, respectively. These ar
connected to each other in the obvious ways, and all c
verge to the Boltzmann-Gibbs-Shannon entropy in the li
q→1:

lim
q→1

Sq
~R!@p#5 lim

q→1
Sq

~T!@p#5 lim
q→1

Sq
~NT!@p#5S@p#

52(
i 51

W

pi ln pi . ~9!

For a statistically independent bipartite system,~A,B!, these
entropies satisfy

Sq
~J!~A,B!5Sq

~J!~A!1Sq
~J!~B!1t~J!~q!Sq

~J!~A!Sq
~J!~B!,

~10!

where

t~R!~q!50, ~11!

t~T!~q!512q, ~12!

t~NT!~q!5q21. ~13!

Thus, the Re´nyi entropy is additive, whereas the Tsallis a
normalized Tsallis entropies are nonadditive.

The Rényi entropy is conventionally used for the defin
tion of the generalized dimension in multifractals@6#, and the
Tsallis entropy plays a central role in nonextensive statist
mechanics@1–3#.

Variation of F (J) with respect topi gives rise to the fol-
lowing stationary distribution:

pi
~J!5

1

Z̃q
~J!~l~J!!

eq~2l~J!Qi !, ~14!

Z̃q
~J!~l~J!!5(

i 51

W

eq~2l~J!Qi !, ~15!

wherel’s are given by

l~R!5
b

11~12q!bQq
~R! , ~16!

l~T!5
b

cq
~T!1~12q!bQq

~T! , ~17!

l~NT!5
b

1/cq
~NT!1~12q!bQq

~NT! , ~18!

respectively, provided that, in Eqs.~17! and~18!, we have set
04613
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cq
~J!5(

i 51

W

~pi
~J!!q. ~19!

Also, in the above expressions ofl’s, Qq
(J) stands for the

normalizedq-expectation value ofQ with respect topi
(J) in

Eq. ~14!. Here, it is worth mentioning that, as long as th
q-exponential distribution is concerned, the expectat
value has to be defined in terms of the escort distribution
in Eq. ~4!, since only in this case can the principle of max
mum generalized entropy be consistent with the principle
equala priori probability @11#. In the limit q→1, Eq. ~14!
tends to the Boltzmann-Gibbs-Jaynes exponential distr
tion and the power-law distributions ofQ cannot be obtained
as long as they are based on the principle of maximum
tropy with the constraint linear inQ.

Thus, in fact, the Re´nyi, Tsallis, and normalized Tsallis
entropies all lead to theq-exponential distributions of the
same type. In other words,mere fittings of observed data b
the q-exponential distributions do not tell us anything abo
which type the underlying physical entropy is. In this respect,
it should be noted that, in Ref.@12#, Lesche has presented
counterexample showing instability of the Re´nyi entropy.

In this paper, we show that the Re´nyi and normalized
Tsallis entropies are unstable under small deformation o
distribution and therefore cannot represent experiment
observable quantities, whereas the Tsallis entropy is st
and can provide an entropic basis for theq-exponential dis-
tributions. The discussion is general and isindependent of
any stationary properties.

The paper is organized as follows. In Sec. II, the rigoro
definition of stability of a statistical quantity is given. In Se
III, instability of the normalized Tsallis entropy as well as th
Rényi entropy is shown. In Sec. IV, a general proof is esta
lished for stability of the Tsallis entropy. Section V is d
voted to a conclusion.

II. OBSERVABILITY AND STABILITY

Consider a statistical quantityC5C@p#, which has its
maximum valueCmax•C@p# is said to be stable if the amoun
of its change under an arbitrary small deformation of t
distribution remains small. Any observable quantities have
be stable, since otherwise their values cannot be experim
tally reproducible. Let us measure the size of deformat
from $pi% i 51,2,...,W to $pi8% i 51,2,...,W by the l 1 norm:

ip2p8i15(
i 51

W

upi2pi8u. ~20!

Note that this quantity should be independent ofW. Then, an
observable quantity,C@p#, has to possess the followin
property@12#:

~; «.0! ~ 'd.0! ip2p8i1<d⇒UC@p#2C@p8#

Cmax
U,«

~21!

for arbitrary values ofW.
4-2



p

he

he

en

th

STABILITY OF TSALLIS ENTROPY AND . . . PHYSICAL REVIEW E66, 046134 ~2002!
III. INSTABILITIES OF RE ´ NYI AND NORMALIZED
TSALLIS ENTROPIES IN THE THERMODYNAMIC LIMIT

In this section, we discuss instabilities of the Re´nyi and
normalized Tsallis entropies by using a counterexam
which violates the condition in Eq.~21!.

First of all, we recall that Re´nyi, Tsallis, and normalized
Tsallis entropies take their maximum values for t
equiprobabilitypi51/W ( i 51,2,...,W):

Sq,max
~R! 5 ln W, ~22!

Sq,max
~T! 5 lnqW, ~23!

Sq,max
~NT! 52 lnqW21. ~24!

Here, lnqx stands for theq-logarithmic function defined by

lnqx5
1

12q
~x12q21! ~x.0!, ~25!

which is the inverse function of theq-exponential function
and converges to the ordinary logarithmic function in t
limit q→1.

The deformation of a distribution to be examined is giv
as follows@12#. For 0,q,1,

pi5d i1 , pi85S 12
d

2

W

W21D pi1
d

2

1

W21
. ~26!

For q.1,
04613
le

pi5
1

W21
~12d i1!, pi85S 12

d

2D pi1
d

2
d i1 . ~27!

Clearly this preserves the normalization condition. In bo
the cases of 0,q,1 andq.1, the l 1 norm is seen to be

ip2p8i15d. ~28!

Also, from Eqs.~26! and ~27!, it is immediate to obtain the
following. For 0,q,1,

(
i 51

W

~pi !
q51, (

i 51

W

~pi8!q5S 12
d

2D q

1S d

2D q

~W21!12q.

~29!

For q.1,

(
i 51

W

~pi !
q5~W21!12q,

(
i 51

W

~pi8!q5S d

2D q

1S 12
d

2D q

~W21!12q. ~30!

A. Rényi entropy

The following discussion about instability of the Re´nyi
entropy can be found in Ref.@12#, but we present it here in
order to make the discussion self-contained.

Using Eqs.~29! and~30! in Eq. ~6!, we find the following.
For 0,q,1,

Sq
~R!@p#50, Sq

~R!@p8#5
1

12q
lnF S 12

d

2D q

1S d

2D q

~W21!12qG , ~31!

USq
~R!@p#2Sq

~R!@p8#

Sq,max
~R! U5U 1

12q
lnF S 12

d

2D q

1S d

2D q

~W21!12qG
ln W

U→1 ~W→`!. ~32!

For q.1,

Sq
~R!@q#5 ln~W21!, Sq

~R!@p8#5
1

12q
lnF S d

2D q

1S 12
d

2D q

~W21!12qG , ~33!

USq
~R!@p#2Sq

~R!@p8#

Sq,max
~R! U5U ln~W21!2

1

12q
lnF S d

2D q

1S 12
d

2D q

~W21!12qG
ln W

U→1 ~W→`!. ~34!

Therefore, the condition in Eq.~21! is violated.
4-3
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B. Tsallis entropy

Using Eqs.~29! and ~30! in Eq. ~7!, we find the following.

For 0,q,1,

Sq
~T!@p#50, Sq

~T!@p8#5
1

12q F S 12
d

2D q

1S d

2D q

~W21!12q21G , ~35!

USq
~T!@p#2Sq

~T!@p8#

Sq,max
~T! U5U S 12

d

2D q

1S d

2D q

~W21!12q21

W12q21
U→S d

2D q

~W→`!. ~36!

For q.1,

Sq
~T!@p#5 lnq~W21!, Sq

~T!@p8#5
1

12q F S d

2D q

1S 12
d

2D q

~W21!12q21G , ~37!

USq
~T!@p#2Sq

~T!@p8#

Sq,max
~T! U5U ~W21!12q2S d

2D q

2S 12
d

2D q

~W21!12q

W12q21
U→S d

2D q

~W→`!. ~38!

Therefore, ifd is taken to bed,2«1/q, the condition in Eq.~21! is satisfied.

C. Normalized Tsallis entropy

Using Eqs.~29! and ~30! in Eq. ~8!, we find the following.

For 0,q,1,

Sq
~NT!@p#50, Sq

~NT!@p8#5
1

12q F 12
1

S 12
d

2D q

1S d

2D q

~W21!12qG , ~39!

USq
~NT!@p#2Sq

~NT!@p8#

Sq,max
~NT! U5U12

1

S 12
d

2D q

1S d

2D q

~W21!12q

12Wq21

U
→1 ~W→`!. ~40!

For q.1,

Sq
~NT!@p#52 lnq~W21!21, Sq

~NT!@p8#5
1

12q F 12
1

S d

2D q

1S 12
d

2D q

~W21!12qG , ~41!

USq
~NT!@p#2Sq

~NT!@p8#

Sq,max
~NT! U5U2~W21!q211

1

S d

2D q

1S 12
d

2D q

~W21!12q

12Wq21

U
→1 ~W→`!. ~42!
he
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Therefore, as in the case of the Re´nyi entropy, the condition
in Eq. ~21! is violated.

The results in Eqs.~32!, ~34!, ~40!, and~42! mean that the
Rényi and normalized Tsallis entropies with 0,q,1 over-
estimate a large number of occupied states even if t
04613
ir

overall probability is so small that they are irreleva
and those with q.1 overestimate a high peak o
probability.

Thus, among the three, there is a possibility only for t
Tsallis entropy to be observable.
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IV. STABILITY OF TSALLIS ENTROPY

Stability of the Boltzmann-Gibbs-Shannon entropy h
been shown in Ref.@12#. Here, we prove stability of the
Tsallis entropy by generalizing the discussion in Ref.@12#.

Let us define the following quantity:

Aq@p;t !5(
i 51

W S pi2
1

eq~ t ! D
1

, ~43!

wheret is a positive parameter and the symbol (x)1 means

~x!15max$x,0%. ~44!

The following will be useful later:

~x!15xu~x!, ~45!

u~x!12~y!1u<ux2yu, ~46!

where u(x) is the Heaviside unit step function defined b
u(x)50 for x,0 andu(x)51 for x.0. The quantity in Eq.
~43! has several interesting properties.

From Eq.~46!, it immediately follows that

uAq@p;t !2Aq@p8;t !u<ip2p8i1 . ~47!

Using the relation

S (
i 51

W Fpi2
1

eq~ t !G D
1

<(
i 51

W S pi2
1

eq~ t ! D
1

,1, ~48!

we have

S 12
W

eq~ t ! D
1

<Aq@p;t !,1. ~49!

In particular, if t> lnq W, then Eq.~49! becomes

12
W

eq~ t !
<Aq@p;t !,1. ~50!

The same is true for another distribution$pi8% i 51,2,...,W , that
is,

21,2Aq@p8;t !<211
W

eq~ t !
. ~51!

Adding Eqs.~50! and ~51!, we find

uAq@p;t !2Aq@p8;t !u,
W

eq~ t !
~; t> lnq W!. ~52!

In the limit t→tmax with tmax5` (0,q,1), 1/(q21)
(q.1) @see Eq.~3!#, eq(t) diverges and thereforeAq@p;t)
tends to unity. So, the integral*0

tmaxdt„12Aq@p;t)… may con-
verge. This is in fact the case. Using Eq.~45!, this integral is
written as
04613
s
E

0

tmax
dt„12Aq@p;t !…

5(
i 51

W E
0

tmax
dtS pi2

1

eq~ t ! D F12uS pi2
1

eq~ t ! D G
1WE

0

tmax
dt

1

eq~ t !
. ~53!

The second term on the right-hand side gives

WE
0

tmax
dt

1

eq~ t !
5

W

q
. ~54!

On the other hand, noting 0, lnq(1/pi),tmax, the integral in
the first term is calculated as follows:

(
i 51

W E
0

tmax
dtS pi2

1

eq~ t ! D F12uS pi2
1

eq~ t ! D G
5(

i 51

W E
0

lnq~1/pi !

dtS pi2
1

eq~ t ! D
5

1

12q F(
i 51

W

~pi !
q21G

1
1

q (
i 51

W

~pi !
q2

W

q
. ~55!

Therefore, we obtain

E
0

tmax
dt„12Aq@p;t !…5

1

q
Sq

~T!@p#1
1

q
, ~56!

or, conversely,

Sq
~T!@p#5211qE

0

tmax
dt„12Aq@p;t !…. ~57!

Now, using the representation in Eq.~57! and takinga
satisfying2 lnq W,0,a,tmax, we have

uSq
~T!@p#2Sq

~T!@p8#u5qU E
0

tmax
dt„Aq@p;t !2Aq@p8;t !…U

<qE
0

tmax
dtuAq@p;t !2Aq@p8;t !u

5qE
0

a1 lnq W

dtuAq@p;t !2Aq@p8;t !u

1E
a1 lnq W

tmax
dtuAq@p;t !2Aq@p8;t !u.

~58!

From Eq.~47!, the first integral is found to satisfy
4-5
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E
0

a1 lnq W

dtuAq@p;t !2Aq@p8;t !u<ip2p8i1~a1 lnqW!.

~59!

Likewise, from Eq.~52!, the second integral is evaluated

E
a1 lnq W

tmax
dtuAq@p;t !2Aq@p8;t !u

<E
a1 lnq W

tmax
dt

W

eq~ t !
5

W

q
@eq~a1 lnq W!#2q. ~60!

Therefore, we have

uSq
~T!@p#2Sq

~T!@p8#u<qip2p8i1~a1 lnq W!

1
W

@eq~a1 lnq W!#q . ~61!

This inequality holds for any values ofa satisfying2 lnq W
,0,a,tmax. Evaluating the minimum of the right-han
side, which is realized when
.

o

is

ol

s:

04613
a1 lnq W5 lnq

W

ip2p8i1
, ~62!

Eq. ~57! is reexpressed as follows:

uSq
~T!@p#2Sq

~T!@p8#u<qip2p8i1 lnq

W

ip2p8i1

1W12q~ ip2p8i1!q. ~63!

Using the equality lnq(y/x)5xq21(lnq y2lnq x), we further
obtain

uSq
~T!@p#2Sq

~T!@p8#u<~ ip2p8i1!q lnq W1~ ip2p8i1!q

3~12q lnqip2p8i1!, ~64!

from which we find
USq
~T!@p#2Sq

~T!@p8#

Sq,max
~T! U<U~ ip2p8i1!q1

~ ip2p8i1!q~12q lnqip2p8i1!

lnq W U→H ~ ip2p8i1!q ~0,q,1!

qip2p8i1 ~q.1! ~W→`!.
~65!
ble
ch
s.

ed
at
of

opy

o-
Therefore, taking ip2p8i1<d,«1/q (0,q,1) or ip
2p8i1<d,«/q (q.1), we see that the condition in Eq
~21! is satisfied by the Tsallis entropy.

The above discussion holds for;q.0, and so, as a
simple byproduct, stability of the Boltzmann-Gibbs-Shann
entropy @12# corresponding to the limitq→1 ~also of the
Rényi and normalized Tsallis entropies! is reestablished.

V. CONCLUSION

We have shown that among the Re´nyi, Tsallis, and
normalized Tsallis entropies, only the Tsallis entropy
n

stable and can give rise to experimentally observa
quantities. Therefore, it is the Tsallis entropy on whi
the ubiquitousq-exponential distributions have their basi
A remaining important ~and hard! question is whether
or not the Tsallis entropy is the unique generaliz
entropy. Regarding this point, we wish to mention th
there are some affirmative points: there exists a set
axioms and the uniqueness theorem for the Tsallis entr
@13#, and the structure of nonadditivity in Eq.~10! is
essential from the viewpoint of the zeroth law of therm
dynamics@14,15#.
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